Developing Topsy Turvy and Number Planet

Dr. M. Oskar van Deventer Prof. Igor Kriz

SciAm challenge conquered $2 x$

- Challenge in Scientific American
- Group theory, M12 sporadic simple group
- "Implement M12 puzzle mechanically"
- Implementation no.1: Topsy Turvy
- Implementation no.2: Number Planet
- Solving the M12 puzzles
- Mission accomplished, now what?

Challenge in Scientific American

- Article by Igor Kriz in SciAm July 2008
- "Simple Groups at Play"
- Group theory
- Concept of "simple group"
- C.f. "prime numbers"
- Oddball "sporadic simple groups"
- Smallest is Mathieu 12 (M12) group

Challenge in Scientific American

- Puzzles are good to illustrate group theory - E.g. Rubik's Cube
- New electronic puzzle illustrates M12 - Constructed by two permutations of 12 tokens
-"Invert" and "Merge"
- Only 95040 permutations reachable

Challenge in Scientific American

- Challenge by Igor: "Implement M12 as a mechanical puzzle"

Implementation no.1: Topsy Turvy

- Challenge picked-up by Oskar
- "Merge" hard to implement, slapstick?
- "Split" (inverse "Merge") easier to implement
- Using Jukebox or Pachinko switches

Implementation no.1: Topsy Turvy

- "Pachinko"-type 12-splitter
- Big crank to turn LEFT or RIGHT

Implementation no.1: Topsy Turvy

- 3 prototypes to get mechanism right
- Gears used as "Ball bearings"
- Rattle prevents backing up
$- \pm 240^{\circ}$ switch (George Miller) gains time
- Top pin (Peter Knopers) forces token in

Implementation no.1: Topsy Turvy

- Demonstration

Implementation no.2: Number Planet

- Alternative approach proposed by Igor - Planar permutations: "Rotate" and "Swap"

Implementation no.2: Number Planet

- Several 3D designs by Oskar
- Mechanism found, 5-step "Invert"
- Oskar requests better planar permutation
- To prevent (sur)rounded 0-1

Implementation no.2: Number Planet

- Igor finds better planar permutation
- Five minutes before Oskar
- Oskar finalizes design

Implementation no.2: Number Planet

- 3D printed prototypes by UM3D and TNO
- FDM and SLS technologies
- Fixing design errors and STL problems
- Coloring attempts

Solving the M12 puzzles

- Twelve tokens, two permutations
- M12: if 5 tokens correct than all 12 correct
- Approach 1: God's Table by computer
- Fastest solution, impossible to memorize
- Approach 2: Recursive solution by hand
- Memorizable, but 1000's steps to execute
- Approach 3: Computer-aided optimization
- 5 memorizable sequences for 5 tokens

Mission accomplished, now what?

- Two completely different implementations of same M12 challenge
- Topsy Turvy: gravity, one-way
- Number Planet: twisty, reversible
- Excellent illustrations of M12 "simple sporadic group"
- Any commercial potential other than "connoisseurs"?

