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COMPUTIER
RECREATIONS

Old and new

three-dimensional mazes

by A. K. Dewdney

“_..alabyrinth constructed by Daed-
alus, so artfully contrived that who-
ever was enclosed in it could by no
means find his way out unassisted.”

— Bulfinch’s Mythology

ost mazes are two-dimension-

al, so that if we look down on

them, we are able to work our

way through their intricate twists and

turns. But we cannot look down, so to

speak, on three-dimensional mazes:

upper levels obscure lower ones. We

have no alternative but to feel our

way—either literally -or figuratively—
along complex passages. -

There are both old three-dimension-

al mazes and new ones. Given its leg-

up

WEST SOUTH

The triple right-hand rule for three-dimensional mazes

100

SCIENTIFIC AMERICAN September 1988

endary difficulty, Daedalus’ labyrinth
of yore must have been three-dimen-
sional. Its stygian darkness serves as
an appropriate setting for an explora-
tion of maze-solving techniques, in-
cluding an extension of the famous
right-hand rule employed in the solu-
tion of two-dimensional mazes. As for
modern mazes, those that are con-
structed by M. Oskar van Deventer are
not only three-dimensional but also
invisible! They lead to a fascinating
reconstruction problem: When can
three two-dimensional mazes define a
single three-dimensional one?
Daedalus constructed his notorious
labyrinth for Minos, the powerful king
of Crete. The king did not intend the

maze for recreational purposes, how-
ever. The maze served to confine sev-
en youths and seven maidens sent to
him by Athens each year as tribute. No
amount of intelligence would serve
the hapless victims as they crept along
its damp, dark passages seeking the
way out. But that was not the worst of
it: a fierce and horrendous creature,
known as the Minotaur, inhabited the
labyrinth. The Minotaur, which had a
human head and the body of a bull,
devoured the poor young Athenians
who were trapped in the structure.

Only Theseus, the fabled Greek hero,
solved the labyrinth and in doing so
killed the Minotaur. He tied a length of
thread provided by the king’s daugh-
ter (who secretly loved him, of course)
to the outside of the labyrinth and
unwound the thread as he wandered
the passages searching for the Mino-
taur. After slaying the Minotaur, he
merely followed the thread back to
escape from the labyrinth.

What would have happened if The-
seus had been absentminded and had
forgotten to secure the thread before
entering the labyrinth? Could he have
escaped some other way? One possi-
bility would have been for him to tie
the thread to the slain Minotaur before
setting out in search of the exit. The
thread would then at least have en-
abled him to return to the same start-
ing point (the carcass of the monster)
after each unsuccessful probe into
Daedalus’ cunning labyrinth. But the
thread alone would not have guaran-
teed an eventual exit from the maze.
How would Theseus have remem-
bered which passages he had already
explored?

That depends on whether Theseus’
memory was internal or external. If it
was internal, he might simply have
remembered the turns he took at each
junction he encountered. If it was ex-
ternal, he might have placed some
token at each junction as a record of
transversal. Personally, I think the lat-
ter form of memory is the likelier one,
and so we shall allow Theseus a num-
ber of one-drachma coins.

Every time Theseus came to a junc-
tion of three or more passages, he
would have examined the floor at the
entrance to each passage. If a coin was
already there, he would not have
entered that passage. If no coin was
there, he would have entered. After
entering he would immediately have
put a coin down within view of the
junction. Some readers will no doubt
object that Theseus could not pos-
sibly have seen the coins because of
the utter darkness in the labyrinth. It
therefore seems reasonable to allow
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The reconstruction of Daedalus’ labyrinth and a possible path (color)

him some form of ancient fire-making
apparatus, such as a cigarette lighter.
In following the procedure just out-
lined, Theseus might well have been
forced to backtrack. If, for example, he
had come to a dead end or a junction
where all passages had coins at their
entrances, he would have had to re-
trace his steps.Is it possible that in the
course of backtracking Theseus might
have encountered nothing but non-
enterable junctions? In other words,
could he have been caught in an infi-
nite loop? For the benefit of those who
like to think for themselves, I shall not
answer the question. Suffice it to say
that the basic method I have outlined
is widely applied in modern comput-
ing for searching through data struc-
tures; it is called a depth-first search.
It might have happened that our
intrepid hero had no coins or—worse
yet—no cigarette lighter. How could
he then have solved the maze? Luckily
there is a method for escaping from
the maze without external memory.
Moreover, executing it would not have
taxed Theseus’ brain any more than
carrying out a depth-first search. I call
this method the triple right-hand rule.
Ordinarily two-dimensional mazes
can be solved by the so-called right-
hand rule: on entering the maze one
keeps a wall continuously on one's
right, no matter how the passages may
twist and turn. If a passage forks, one

turns down the right-hand corridor. If
a passage comes to a dead end, one

‘Simply turns around—keeping a wall

on one’s right. Eventually one will
emerge. Astute readers will have no-
ticed I did not state explicitly that one
would emerge at the exit. If the exit
happens to be in the middle of the
maze (as it is in many paper-and-pen-
cil exercises), one might well come out
where one entered after a tiring appli-
cation of the right-hand rule. But re-
emerge one must. The reason is very
simple: abiding by the rule enables
one never to retrace one’s steps. If no
part of the wall that defines the maze's
passages is ever retraced, it follows
that eventually one must run out of
wall, so to speak, at an opening. (The
exception is the case in which the
walls of the maze form a completely
closed circuit, but in that case there
would be no opening in the wall where
one could have entered.)

A variation of the right-hand rule
can be applied in solving three-dimen-
sional mazes, including the cruel laby-
rinth of King Minos. To make things
simple, I assume all passages in the
maze have a square cross section and
are quite straight, except at bends
where they make 90-degree turns.
In addition, I assume the passages
run precisely east-west, north-south
or up-down and are therefore perpen-
dicular to one another. I also assume

only two types of junction are formed
wherever three passages come togeth-
er:aT junctionand a three-way corner.

Let me now take the reader groping
along the passages in order to explain
the operation of the triple right-hand
rule. No 8Yroscope is necessary; gravi-
ty tells us which way is up and which
is down. The other four directions are
remembered by keeping track of our
turns as we make our way through the
three-dimensional maze. If we enter
the maze facing east, for example, a
turn to the right leaves us facing
south; after another turn to the right
we would be facing west, and so on.

The triple right-hand rule is applied
ata T junction only after we identify
the plane in which the junction lies,
since each of the three possible planes
has a specific “handedness” assigned
to it [see illustration on opposite page).
Imagine a clock stuck on a surface
parallel to the plane of the T junc-
tion. We arbitrarily call the direction
in which the hands of a clock turn
“right,” and we will consistently turn
in that direction in the labyrinth.

In the case of three-way corners the
rule must be modified somewhat. (Is
that the Minotaur bellowing in the
distance?) Say that up-down passages
have direction 1, north-south passag-
es direction 2 and east-west passages
direction 3. If one enters a three-way
corner along direction 1, one leaves
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along direction 2. If one enters along
direction 2, one leaves along direction
3. Even Theseus might have guessed
that if he enters a three-way corner
along direction 3, he ought to leave
along direction 1. That is all there is to
the triple right-hand rule.

The rule happens to satisfy a gener-
al criterion for solutions: no passage
would be traversed twice in the same
direction. Does the triple right-hand
rule guarantee success? I contend that
it does, but only if the maze has one
possible path connecting entrance to
exit. If the maze has more than one
possible solution, I more modestly
propose eventual emergence from the
maze—through either the exit or the
entrance.

Of course, there is no guarantee that
Theseus would have emerged from
the labyrinth had he started following
the triple right-hand rule only after
dispatching the Minotaur. But if he
had used the rule from the moment he
entered the maze and if the struggle
with the Minotaur had not disturbed
his memory, he would eventually have
emerged a hero into the daylight. The-
seus would not have cared whether he
had left by the entrance or the exit!

With these rules in mind readers
may feel ready to try solving a three-
dimensional labyrinth. After some ex-
tensive research into the matterT offer
nothing less than a reconstruction of
Daedalus’ original lapyrimh. The re-

A simple van Deventer maze (left) and its projective cast (right)
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construction is displayed on the pre-
ceding page. Its six levels are all un-
derground. The top level (level 1) lies
just under the heavy stone slabs of the
courtyard of King Minos’ palace. Two
of the slabs are missing, revealing
holes. The reader is shown into the
maze at one of those holes by a bur-
ly servant of King Minos. The reader
might eventually emerge at the other
hole, for that is the labyrinth’s exit.
Between entrance and exit lie perhaps
a few adventures and misadventures.

The six levels of the labyrinth reflect
the origin of its design: a cube consist-
ing of six cells on a side. All horizontal
passages appear as passages normally
do in maps of two-dimensional mazes.
Vertical passages, however, appear as
solitary squares. A would-be Theseus
may go from one level to the level
below by clambering down a hole de-
picted as a black square. He or she
will then emerge in the corresponding
cell in the underlying level, where the
reader will find a larger white square
on the map—the hole through which
he or she came. Naturally, when a
reader wants to go up, he or she must
go to the nearest white square. Some-
times one sees a black square inside
a white one. This simply means that
from that particular position in the
labyrinth it is possible to go either up
or down.

There are several possible paths
from entrance to exit in the labyrinth.
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Some readers will be content to find
just one of them; others may want to
search for the shortest solution path
as measured in cells traversed. To
make it a bit more adventurous, I have
added a Minotaur to the labyrinth. It
stands at the one spot where it is
guaranteed to intercept any innocent
explorer. 1 shall mention in a future
column the first five readers who re-
port the spot to me.

Among the more modern types of
three-dimensional maze are two that
stand out. The first is visible, the sec-
ond invisible. The visible maze is a
clear plastic cube that contains an
arrangement of intersecting, perforat-
ed walls. A steel ball rolls along pas-
sages created by the walls. The solver
holds the maze, manipulating it so
that the ball rolls until it eventual-
ly reaches the “finish” position. Such
a maze, made by the Milton Bradley
Company, was a favorite in game
stores a decade ago. Today a similar
puzzle, called Miller's Maze, is avail-
able at Toys-“R”-Us stores.

The other kind of modern maze
comes from the workshop of van De-
venter in Voorburg, The Netherlands.
He calls one of his productions a holle
doolhof, or hollow maze. The terminol-
ogy is perfectly reasonable: his mazes
are wood boxes that contain absolute-
ly nothing! Not a passage or wall can
be seen within, but a three-dimension-
al maze nonetheless exists in the box.




The secret lies in the sides of the
box. They are two-dimensional “con-
trol mazes”: wood surfaces in which
slots have been cut. A cursor consist-
ing of three mutually perpendicular
wood spars registers one’s position in
the hollow maze. Each spar passes
from one side of the box to the other,
sliding along the slots of the control
maze on each side. Not surprisingly,
the two control mazes on opposite
sides of the box are identical. In this
way van Deventer can produce a single
three-dimensional maze from three
pairs of two-dimensional mazes.

In the simple example shown on the
Opposite page one starts with the cur-
sor in one corner of the box and tries
to manipulate it into the opposite cor-
ner. Each spar is pushed into and
pulled out of the box, automatically
moving the other two spars (if possi-
ble) along slots in their respective con-
trol mazes. It might seem that to solve
a hollow maze one merely solves each
of the three control mazes. But this is
not so. Although each of the control
mazes can be easily solved, the hollow
maze is quite difficult.

The difficulty lies in the fact that
possible moves on one control maze
may be blocked by another control
maze. Moreover, it is not clear in which

order the cursor’s threé'spars should

be pushed or pulled. There may be
several possible moves at any given
position of the cursor. To solve the
maze one might as well close one's
eyes and “feel” one’s way through it. In
such a mode the invisible maze within
the box takes on a new, tactile reality.

The invisible maze can in principle
be made visible by tracing the slots
of three mutually adjacent control
mazes onto a solid cube of material
that can be carved. When the tracing is
complete, all “nonmaze” material is
cut away from the solid. The contro]
mazes must of course have the same
orientation as they do on the original
van Deventer maze.

Since the process is largely imagi-
nary to begin with, I equip myself with
a laser saw in carrying it out. Position-
ing the saw directly over one of the
cube’s faces, I simply follow the traced
lines, cutting straight through the sol-
id as I go. When the cutting is com-
plete, I gingerly push all the unwanted
material out of the cube. It slides away,
leaving a three-dimensional form that
corresponds to the slots of the control
maze. After the same process is re-
peated for the other two faces, the
solid that remains is in effect a “nega-
tive” of van Deventer's implicit maze:
the allowed passages are represented
by solid posts and beams. I call it a

projective cast. Readers can see aren-
dition of one on the opposite page.

Two fascinating questions revolve
around projective casts. First, when do
three two-dimensional mazes yield a
projective cast of a viable three-di-
mensional maze? Second, when does
a projective cast yield three projec-
tions that are viable two-dimensional
mazes? The term “viable maze” ought
to be defined. It refers to a maze in
which all passages have unit width
and there is a path from the “start” to
the “finish” position. (A viable three-
dimensional maze that results from
three two-dimensional control mazes,
it seems to me, ought to be called a
van Deventer maze.) Other conditions
could readily be suggested, but they
would relate to the aesthetics of good
maze design; the proposed definition
will do for a start.

One can experiment with very sim-
ple control mazes and still be quite
confounded by what emerges in three
dimensions. For example, one can con-
struct a van Deventer maze from rath-
er trivial control mazes consisting
of 3-by-3 cellular matrices in which
certain adjoining cells have been re-
moved. Readers might enjoy starting
with three 3-by-3 control mazes hav-
ing L-shaped slots in various orienta-
tions. How many combinations result

'in van Deventer mazes?

The other question addresses the
opposite issue: When does a three-
dimensional maze yield three viable
control mazes as projections? Both
questions have practical importance
for van Deventer. An answer to either
one greatly simplifies the process of
designing his mazes. Van Deventer
himself confesses to having done a
great deal of actual cutting and trying
in coming up with more complicated
hollow mazes. Readers with some-
thing to say on the subject should
write to van Deventer directly at the
following address: p.a. Dr. Beguinlaan
44, 2272 AK Voorburg, The Nether-
lands. A creative response might well
resultin a second look at van Deventer
mazes in this department,

he invisible professor appeared

in this department in May to

draw a number of classic exam-
ples from the infinite variety of trigo-
nometric and algebraic curves. Among
the many readers who had made prior
acquaintance with the professor were
some who had interesting comments
to make.

Abe Achkinazi of Bell, Calif., has pro-
posed a date between the invisible
professor and Lucy, the Hewlett-Pack-
ard color plotter in the mathematics

laboratory of the California State Uni-
versity at Northridge. The professor
might enjoy Lucy’s Lissajous figures.
Achkinazi has a program that draws
straight lines between corresponding
points on a pair of such figures. In this
way Lucy produces wild curves clad in
a kind of moiré sheen.

Tom Dorn of Vancouver, British Co-
lumbia, recommends his own program
BUMBLEBEE. It incorporates the follow-
ing parametric equations in which the
constant a can be varied:

X =2 sin(at)
y= el sin !.

Temple H. Fay of the University
of Southern Mississippi finds polar
curves, which are plotted in terms of
coordinates (1,0) rather than (x,y), use-
ful in teaching calculus. The professor
plots a butterfly with the aid of sine,
cosine and exponential functions:

r=e“%—2c0s(40) + sin’(6/12).

Commercial and quasi-commercial
interest runs rampant in the area of
curves. There are products aplenty to
aid the amateur charter of curvilinear
complexity. For example, David E.-B,
Kennedy, a mathematics teacher at the
Langley Secondary School in Langley,
British Columbia, is enthusiastic about
the Casio fx-7000G calculator-plotter.
This hand-held marvel displays mini-
ature stepped plots of virtually any
function on a 1.5-by-2-inch display.

SPIA, an apparently comprehensive
mathematics program, allows users to
construct and plot formulas of almost
any type. Moreover, it includes special
manipulations such as Fourier trans-
forms for those who want to under-
stand signal processing. Interested
readers can write to Moonshadow
Software, P.0O. Box 5974, Baltimore,
Md. 21208.

Finally, I have heard from a shad-
OWy organization called MAL (an ac-
ronym for Maths Algorithm Library)
at P.O. Box 531, Wynnum, Brisbane,
Q 4178, Australia. An amusing flyer
promises MALtreatment to readers in-
terested in MALfunctions. MALpractice
is easy, according to MALadministra-
tor Dr. P. ffyske Howden.
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